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Dynamics of Triangulations

P. Collet1 and J.-P. Eckmann2,3
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We study a few problems related to Markov processes of flipping triangula-
tions of the sphere. We show that these processes are ergodic and mixing, but
find a natural example which does not satisfy detailed balance. In this example,
the expected distribution of the degrees of the nodes seems to follow the power
law d−4.
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1. INTRODUCTION

We consider a Markov chain on triangulations of the sphere. Let T denote
the set of triangulations, by this we mean the set of all combinatorially
distinct rooted simplicial 3-polytopes.

Tutte(7) showed that their number is asymptotically
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as the number n of vertices goes to ∞. Of course, Euler’s theorem holds
for such triangulations, and this means that when there are n nodes, there
are also 3n−6 links and 2n−4 triangles.

For an element T ∈ T , we denote by N (T ) the set of nodes and by
L(T ) the set of links.
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physics.unige.ch
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For any link � (connecting the nodes A and B), we consider the
“complementary” link �′, which is defined as follows: if (A,B,C) and
(A,B,D) are the two triangles sharing the link �, then �′ is the link con-
necting C and D.

We assume that for any T ∈T , a probability PT is given on L(T ), i.e.,∑
� PT (�)=1. We define a Markov chain on T as follows. We first choose

a link �∈L(T ) at random (with probability PT (�)).

• If the link �′ belongs to L(T ), we do not change T and proceed
with the next independent choice of a link.

• If �′ does not belong to L(T ), we erase � and replace it by �′. We
obtain in this way a new triangulation T ′ and we proceed with the next
independent choice of a link. This replacement of � by �′ is commonly
called a flip see ref. 6, or a Gross-Varsted move.(5) (see Fig. 1).

We will denote by P(T ′|T ) the transition probability of this Markov
chain.

2. PROPERTIES OF THE MARKOV CHAIN

We now fix n and let Tn denote those triangulations with n nodes.

Proposition 2.1. Assume that infT ∈Tn inf �∈L(T ) PT (�)> 0. Then the
Markov chain defined in Section 1 is irreducible and aperiodic.

Proof. It is well known (see ref. 6) that by flipping links as described
above one can connect any two triangulations of Tn (one shows that any
T can be flipped a finite number of times to reach a “Christmas tree” con-
figuration).

Since by our hypothesis any such (finite) succession of moves has a
non-zero probability this shows the irreducibility of the chain. To prove
aperiodicity, we have to prove that for any high enough iterate of the
transition matrix, all the entries are positive. By the previously mentioned
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Fig. 1. A flip: the link (A–B) is exchanged with (C–D).
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Fig. 2. The “christmas tree” with n nodes, the “branches” between 5 and n not being
shown. Any triangulation can be brought to this form by a sequence of flips.

result, it is enough to show that we can construct cycles of length two and
three for the “Christmas tree”. Cycles of length two are easily obtained by
flipping a link back and forth. For cycles of length three, we consider the
sub “Christmas tree” of size six at the base of the complete “Christmas
tree” (see Fig. 2). We enumerate the nodes as in the figure, assuming n�7.
In particular node 3 has degree 3, nodes 4 to n have degree 4 and nodes
1 and 2 degree n−2.

The cycle of length 3 is obtained by performing the following flips

(1−4) → (3−5)

(2−3) → (1−4)

(4−5) → (2−3)

after which we get again the “Christmas tree” with nodes 3 and 4
exchanged(Fig. 3).

Remark 2.2. Of course, the condition of Proposition 2.1 is not nec-
essary, but we do not know any simple other criterion in terms of the PT ,
but one can think for example of conditions involving two successive flips.
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Fig. 3. The three stages in the cycle of 3 flips regenerating the christmas tree with n nodes.

From this result we conclude that there is only one invariant proba-
bility measure, and with this measure the chain is ergodic and mixing.

3. TWO EXAMPLES

The easiest example is that where one chooses a link uniformly at
random. Then one gets the uniform distribution on T , and, using this sim-
ple fact, many properties of this process can be deduced, (see, e.g., ref. 2).

Here, we consider another example, which was suggested to us by
Magnasco.(3,4) This process consists in first choosing a node uniformly
and then to choose uniformly a link from this node. Let n be the num-
ber of nodes. An easy computation, shown below, leads to

PT (�)= 1
n

(
1

d1(�|T )
+ 1

d2(�|T )

)
, (3.1)

where d1(�|T ) and d2(�|T ) are the degrees of the nodes at the ends of link
� in the triangulation T .

Proof. If � is a link, we denote by ∂� the two nodes it connects. If
� is a link and i is a node, we say that �∼ i if i ∈ ∂�. If i is a node, we
denote by di(T ) its degree in the triangulation T . We have from Bayes’
formula

PT (�)=
∑
i∈N

PT (� | i)P(i).

Moreover, P(i)=1/n for any i, PT (� | i)=0 if � �∼ i and otherwise

PT (� | i)= 1
di(T )

.
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Therefore

PT (�)= 1
n

∑
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1
di(T )

,

which is formula (3.1).

It also follows directly from this expression that for any T ∈T ,

∑
�∈T
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1= 1
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∑
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1
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di(T )=1.

In this computation we have not used the fact that T is a triangulation.
Therefore this relation holds for any graph.

For the second model, we have

Theorem 3.1. The Markov chain P(·|·) is not reversible (when n�7).

Remark. We have not checked what happens for smaller n.

In other words, one cannot easily guess the invariant measure from
the transition probabilities.

Proof. Assume the chain is reversible with respect to some probabil-
ity P on T , namely for any T and T ′ in T we have

P(T ′|T )P(T )=P(T |T ′)P(T ′). (3.2)

If T1, . . . , Tk, Tk+1 =T1 is any cycle of admissible flips, we must have

k∏
j=1

P(Tj |Tj+1)

P(Tj+1|Tj )
=1.

We are going to show that there is a cycle of length 4 for the christmas
graph for which this is not true, (see Fig. 4).

Consider the following cycle for the “Christmas tree” with the same
notations as before

(1−4) → (3−5),

(2−5) → (4−6),

(3−4) → (2−5),

(5−6) → (1−4).



1078 Collet and Eckmann

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4

5

6

7

1 2

3

4
5

6

 

Fig. 4. The four stages of the cycle of 4 flips which regenerate the christmas tree with � 7
nodes, but which show the absence of detailed balance. (Top left → top right → bottom left
→ bottom right → top left.)

An easy computation leads to

4∏
j=1

P(Tj |Tj+1)

P(Tj+1|Tj )
= 10

9
,

if the number of nodes is larger than six.

4. NUMERICAL SIMULATION

We have performed extensive simulations on the model described
above. In this section we summarize the numerical findings, but the reader
should note that we have no theoretical explanation for the results. The
main insight is that the model with the uniform measure(2) leads to an
exponential degree distribution, while the model of ref. 4 leads to a power
law distribution in a sense which we make clear now, (see Fig. 5).
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Fig. 5. A log–log plot for triangulations of size n=2050, 8194, and 32770, after about 1011

flips. The data are the cumulated sum D(k) of the number of nodes with degree �k, divided
by n. The straight part is well fitted with a law of D(k)∼ck−3, so that the degree distribution
seems to be ∼ k−4. We see that there are always two outliers outside the power law on sur-
faces of genus 0. (This number grows to 3–4 when a new node takes over the leading degree.)
We have not been able to reach convergence for triangulations with higher numbers of nodes.

We formulate the results as

Conjecture 4.1. There is a probability measure p on the integers
larger than 2 such that the number of nodes of degree d divided by n con-
verges when n tends to infinity to p(d). Moreover p has polynomial decay
in the sense that d−4p(d) converges to a non-zero finite limit when d tends
to infinity.

Remark 4.2. It should be noted that several deviations from a pure
power law are present in these experiments and will not go away with large
n. First of all, nodes of degree 3 are less frequent than would be suggested
by a power law. We attribute this to the impossibility of doing a flip if a
node of degree 3 is chosen: All its edges are unflippable. Second, there is
always an outlier with a much higher degree than what is suggested by the
power law and most of the time there are two. The reader should note that
while Fig. 5 shows exactly two outliers for each triangulation, there are
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in fact sometimes more, since it is not always the same node which has
maximal degree, and thus, several nodes will momentarily “compete” for
the highest degree.

We have done extensive checks for the correlations of degrees of
neighboring nodes in our simulations. Such correlations have been theoret-
ically explained in ref. 2 for the case of the uniform choosing rule. These
correlations are difficult to measure, but no decisive deviation from inde-
pendence was found, except for some obvious topological rules.

There is a feeling in the community of specialists, be they interested
in random triangulations, or in 2-d gravity (the dynamic dual of our prob-
lem) that the “typical” triangulation should be “flat” (which means that
each node should (wants to?) have six links). To measure the effect of the
tails of distribution of degrees, we use combinatorial differential geome-
try, as advocated by Robin Forman,(1) who introduces a notion of “com-
binatorial Ricci curvature” which, in our case of triangulations reduces to∑

i d
2
i − 5di . Extensive simulations show that this quantity seems to grow

more or less monotonically as the process reaches the equilibrium state.
(Note that since

∑
i di does not depend on the triangulations, we are just

measuring the sum of the squares of the degrees.) Once the “maximum”
has been reached, one observes, with high precision, normal fluctuations
around this maximum. In fact, we used this as the criterion that conver-
gence has indeed taken place. The maximal degree is about n/(3.3 ± 0.2)

and is reached at two nodes. This means that two of the nodes are each
connected to about a third of all nodes. If so, these two outliers will give
a contribution proportional to n2 to the combinatorial Ricci curvature
while the rest of the nodes will only contribute linearly if they obey
Conjecture 4.1.

Another observation, which holds with very high accuracy is that
once a node has been chosen, at equilibrium, exactly 50% of all attempted
flips are not possible, because the “other” link is already present. This
means that a tetrahedron is placed on top of a triangle. Note that the
study of such “vertex-insertions” is already present in Tutte’s work.(7)
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